On pancyclic arcs in hypertournaments
نویسندگان
چکیده
منابع مشابه
t-Pancyclic Arcs in Tournaments
Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...
متن کاملPancyclic out-arcs of a vertex in a hypertournament
A k-hypertournament H on n vertices, where 2 ≤ k ≤ n, is a pair H = (V,AH), where V is the vertex set of H and AH is a set of k-tuples of vertices, called arcs, such that for all subsets S ⊆ V of order k, AH contains exactly one permutation of S as an arc. Inspired by the successful extension of classical results for tournaments (i.e. 2-hypertournaments) to hypertournaments, by Gutin and Yeo [J...
متن کاملThe number of pancyclic arcs in a k-strong tournament
A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. An arc is pancyclic in a digraph D, if it belongs to a cycle of length l, for all 3 <= l <= |V (D)|. Let p(D) denote the number of pancyclic arcs in a digraph D and let h(D) denote the maximum number of pancyclic arcs belonging to the same Hamilton cycle of D. Note that p(D) >= h(D). Moon showed...
متن کاملPancyclic out-arcs of a Vertex in Tournaments
Thomassen (J. Combin. Theory Ser. B 28, 1980, 142–163) proved that every strong tournament contains a vertex x such that each arc going out from x is contained in a Hamiltonian cycle. In this paper, we extend the result of Thomassen and prove that a strong tournament contains a vertex x such that every arc going out from x is pancyclic, and our proof yields a polynomial algorithm to nd such a v...
متن کاملOn Score Sequences ofk-Hypertournaments
Given two nonnegative integers n and k with n ≥ k > 1, a k-hypertournament on n vertices is a pair (V, A), where V is a set of vertices with |V | = n and A is a set of k-tuples of vertices, called arcs, such that for any k-subset S of V , A contains exactly one of the k! k-tuples whose entries belong to S. We show that a nondecreasing sequence (r1, r2, . . . , rn) of nonnegative integers is a l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2016
ISSN: 0166-218X
DOI: 10.1016/j.dam.2016.07.017